设为首页 | 收藏本站

联系电话:0755-28677615

技术服务

中国变压吸附制氮装置技术(PSA制氮机)概述

1、前言
   采用变压吸附技术从空气中提取氮气,在中小规模用户已经广泛普及。在2000Nm3/H能力范围内,比深冷更具吸引力,已经成为氮气市场的主流,它不但生产过程简单维护操作方便,产品纯度在一定范围内可以任意调节,而且规模从几十到上千方规模可以任意选用。
2、工艺介绍
   以空气为原料,变压吸附制氮技术是在常温下利用O2和N2在吸附剂上的吸附速率的差异或吸附容量不同,采用在高压下吸附,低压下解吸原理来制备的。根据不同性能的吸附剂,制氮的机理也不相同。 目前变压吸附制氮采用碳分子筛(CMS)和沸石分子筛(MS)两种技术。 碳分子筛制氮(CMS)是利用碳分子筛对O2和N2吸附速率不同的原理来分离N2的。碳分子筛是一种非极性速度分离型吸附剂,通常以煤为原料,以纸张或焦油为粘结剂加工而成。它之所以能对氧氮分离主要是基于氧气和氮气在碳分子筛上的扩散速率不同(35℃时扩散速率,O2为6.2×10-5,N2为2.0×10-6),氧气在碳分子筛上的扩散速度大于氮气的扩散速度,使得碳分子筛优先吸附氧气,而氮气富集于不吸附相中,从而在吸附塔流出得到产品氮气。 碳分子筛制氮一般采用2个吸附塔,原料压缩空气经过冷干机除去气体中的水分和微量油进入床层,O2等杂质迅速吸附在床层上,N2得以分离在吸附塔出口得到,吸附结束后经过均压和真空解吸或者常压解吸,使吸附剂的杂质组分脱除再生,2个塔循环交替吸附再生。真空解吸或者常压解吸再生的目的是为了往复利用吸附剂。真空法较常压法能耗高,但产品气纯度高。实际中这两种解吸方法都在应用,不过为了降低能耗,真空解吸方式逐渐减少。碳分子筛技术能得到普氮,纯度小于99.99%时相对经济。 沸石分子筛制氮(MS)是利用沸石分子筛对O2和N2吸附容量不同的原理来分离N2的。沸石分子筛是人工合成的硅铝酸盐晶体,加热到一定程度失去结晶水得到的,它由离子孔穴和带负电荷的硅铝骨格所结构。它之所以能对氧氮分离主要是基于非极性的O2和N2受到极性分子的影响产生偶极,而O2和N2分子的诱导偶极与吸附剂固有的极性偶极具有吸附作用,在等温条件下分子筛吸附N2量大于O2,从而在吸附相解吸得到N2产品气,产品气压力低,使用时需要在加压故能耗较高。 MS制氮,原料压缩空气经过干燥器严格脱除水分和CO2,然后再进入MS分子筛床层,N2迅速吸附在床层上,O2等杂质作为吸附废气排空,吸附结束后经过真空解吸,得到产品N2。沸石分子筛制氮对原料要求严格,需要流程较为复杂投资和操作费用增加。
3、装置评价技术分析 
   评价一套变压吸附装置的优劣,一般从产品纯度、生产能力、回收率能耗等指标衡定。产品纯度和生产能力是装置设计目的,在一般情况下均可达到,而回收率和能耗往往被忽视。回收率也是能耗的一部分,收率低消耗的原料气也就越多,能耗也就增加。能耗一般指用于原料气或产品气生压和真空解吸所消耗的电能。从运行装置来看,一般氮气回收率在45-60%之间,单位能耗0.35KWh/Nm3左右。 一般真空解吸流程能耗高于常压解吸流程。流程合理吸附剂性能高的装置,回收率高能耗低。
   以99.5%纯度氮气装置为例。
     制氮方法       能耗 KWh/Nm3
     碳分子筛         0.35
     沸石分子筛       0.5-0.6
     低温法        0.25
   影响装置性能的因素有吸附压力和吸附时间。经验表明,提高吸附压力可以增大碳分子筛的吸附容量,提高氮气纯度,但压力达到0.6Mpa时床层死空间等因素反而导致纯度降低能耗增高。吸附时间越长,产品纯度越低,但回收率高,气流切换次数少碳分子筛粉化程度轻。氮气的产量和纯度是一对对立的因素,氮气出气量越高,纯度越低回收率越低,反之亦然。


N2纯度

消耗

流程及投资

装置能力

碳分子筛

98.5-99.9%

沸石分子筛

99.9-99.99%

加氢脱氧技术

99.99%以上

较高

4、技术发展和展望
   变压吸附制氮技术的发展主要是吸附剂技术的发展。1977年德国埃森矿业研究有限公司BergauForschung(B.F公司)研制开发了碳分子筛制氮技术以来,日本美国等都迅速发展起来。1981年吉林化公设计研究院研制的碳分子筛通过了省级鉴定,随后中国船舶工业总公司也研制开发了碳分子筛。1986年浙江长兴化工厂采用上海化工研究院技术生产的碳分子筛成为国内主要碳分子筛生产力量。国外大批量生产碳分子筛的有德国BF公司、美国Calgon碳公司、日本Takeda化学工业公司和Kuraray化学品公司。国内上海化工设计院、四川天一科技、温州瑞气空分设备有限公司等企业生产氮气装置规模和技术水平发展速度很快,接近世界先进水平。 通过对不同的分子筛比较,国内碳分子筛的产氮率还远低于国外产品,主要原因是国产碳分子筛比表面积仅是BF公司的55%,微孔不够发达。造成此状况的原因是没有完全掌握制作工艺条件和原料配比,检测设备落后无法及时监控生产,原料煤杂质高等。近年来国内碳分子筛也有了长足进步,以浙江长兴化工厂的碳分子筛的产氮率也接近180Nm3/h•t,但是性能不稳定易粉化,使用超过3-6年产气量明显下降。 工艺流程的设计发展与七八十年相比也有了很大发展。用产品氮气的充压和冲洗等流程的采用,提高了氮气回收率和产量。从2塔流程发展到三塔四塔流程,提高了装置的经济性能。特别是不等势均压的应用,使均压后的2个吸附塔内氮气纯度不同,从而降低排空气体的含氮量,提高回收率。

   从变压吸附制氮运行装置来看,国内主流流程为以国外碳分子筛为吸附剂,采用双塔流程,在0.6-0.8Mpa吸附压力下,利用氮气冲洗和常压解吸流程,提取氮气。这种配置能耗低,在0.3-0.4Nm3/kw•h左右。 最新碳分子筛研究技术是向碳分子筛中添加氧化铁,以其磁性增加碳分子筛对氧气的选择吸附性。日本有过书面报道,大连理工大学也进行了这方面的研究。在将来变压吸附制氮技术生产的氮气纯度高于99.999%是极为可能的。 从目前制氮技术应用来看,碳分子筛技术成为主流技术,沸石分子筛技术由于处理原料气和真空解吸等繁杂步骤应用较少。尽管沸石分子筛技术可以提取高纯氮,不过能耗高规模也在200 Nm3以下。高纯氮制取一般采用加氢脱氧技术,在普氮中加入适量的氢气,在加氢脱氧催化剂作用下,氢气和氧气反应生成水,然后再除去残余的氢或氧,最后通过干燥塔除去水分得到高纯氮气。

 

 TLH加氢纯化装置产品介绍:

  一定流量的氮气和氢气同时进入纯化装置,先经氮氢自动配比装置和静态混合器均匀混合,再进入催化脱氧器,在催化剂作用下,氮气中的余氧与氢反应生成水,化学反应式:2H2+02=2H2O,氮气再经过滤水后进入脱氢器除去过量氢,如果工艺允许氮气中含有一定量的氢气,则不脱氢。氮气最后经冷干机和吸干机除去水份得到干燥的高纯度氮气。

    TLHA型为不脱氢型,TLHB为脱氢型。该工艺特别适合于热处理、粉未冶金、铜材冶炼加工、钢铁深加工、轴承、化工、电子、玻璃、金属材料、磁性材料等行业。

 

TLC加碳纯化装置产品介绍:
   在一定温度下,氮气中的余氧与碳催化剂发生氧化反应,生成二氧化碳,化学反应式:C+02=C02,使氮气中氧含量<5ppm,再经变压吸附工艺除去C02及水份,再经精过滤器除去氮气中的颗粒杂质,得到99.9995%纯度以上的氮气。燃烧型氮气纯化装置的催化剂为消耗型,装置累计运行一段时间后需要添加,其最大的特点为不需配备氢气源及出口氮气中不含氢,本装置需按氮气产量的1.1倍配置原料氮气,原料氮气的纯度一般为≥99.9%,其运行成本最理想。

   TLCA型为单脱氧塔流程,用户添加催化剂时需停机适当时间,适用于连续可间断使用的用户。

   TLCB型为双脱氧塔流程,用户添加催化剂时不需停机,可在设备连续运转条件下添加催化剂,适用于连续不间断使用的用户。

   该工艺特别适合于铝型材冶炼加工、轴承、化工、电子、金属材料、贵金属提炼、对氢有限制的场所等行业。

5、结束语
   随着吸附剂进一步发展和工艺流程的合理改进,以其明显的经济效益和简单的操作维护在各个行业推广前景将更加广阔。


2017-04-16

地址:深圳市龙岗区横岗街道六约礼耕路47-18号 电话:0755-28677615 E-Mail:sales@huitongjd.com

版权所有 ©2017-2021 深圳市汇通机电设备有限公司

返回顶部
扫一扫
在线咨询